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Abstract

Power management is an important problem in battery-powered sensor networks as the sen-
sors are required to operate for a long time (usually, several weeks to several months). One of
the challenges in developing power management protocols for sensor networks is prototyping.
Specifically, existing programming platforms for sensor networks (e.g., nesC/TinyOS) use an
event-driven programming model and, hence, require the designers to be responsible for stack
management, buffer management, flow control, etc. Therefore, the designers simplify prototyp-
ing their solutions either by implementing their own discrete event simulators or by modeling
them in specialized simulators. To enable the designers to prototype power management proto-
cols in target platform (e.g., nesC/TinyOS), in this paper, we use ProSe, a programming tool for
sensor networks. ProSe enables the designers to specify their programs in simple abstract mod-
els while hiding low-level challenges of sensor networks and programming-level challenges. As a
case study, in this paper, we specify a power management protocol with ProSe, automatically
generate the corresponding nesC/TinyOS code, and evaluate its performance. Based on the
performance results, we expect that ProSe enables the designers to rapidly prototype, quickly
deploy, and easily evaluate their protocols.
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1 Introduction

In the recent years, sensor networks have become popular due to their wide variety of applications
including border patrolling, hazard detection, habitat monitoring, and micro-climate monitoring.
These applications require the network to operate for a long time (usually, several weeks to several
months). However, the sensors are typically battery-powered (e.g., Mica [1], XSM [2], Telos [3])
and, hence, they can operate continuously only for a few days. In addition, since the sensors are
deployed in large numbers and mostly in inaccessible fields, it is difficult to change the batteries
after deployment. Therefore, power management is crucial for extending the lifetime of the network.

One of the challenges in designing power management protocols for sensor networks is prototyping.
Specifically, existing platforms (e.g., nesC/TinyOS [4]) for programming sensor networks use event-
driven programming model and, hence, require the designer be responsible for stack management,
buffer management, and flow control [5,6]. Therefore, to rapidly prototype and quickly evaluate
protocols, the designers of existing power management protocols (e.g., [7—13]) implement their own
simulators or model their protocols in specialized simulators (e.g., GloMoSim [14]). However, it is
desirable that the designers prototype their protocols in nesC/TinyOS platform as it provides a
framework for generating both simulation as well as production code from the same source.

In this paper, we consider the problem of rapid prototyping of power management protocols in
nesC/TinyOS platform. To deal with programming level challenges (e.g., stack management,
buffer management, flow control, etc) and network level challenges (e.g., message collision, cor-
ruption, synchronization, etc) of sensor networks, we focus on ProSe [15], a programming tool for
rapid prototyping of sensor network protocols and applications. ProSe is based on the theoretical
foundation on computational model in sensor networks [16,17]. It enables the designers to (i) spec-
ify programs in simple abstract models (e.g., read/write model, shared-memory model) that hide
several challenges of sensor networks, (ii) automatically transform the programs into a model con-
sistent with sensor networks, (iii) preserve properties such as self-stabilization and fault-tolerance
in the transformed programs, and (iv) automatically generate and deploy (nesC/TinyOS) binary.

As a case study, we model pCover [13], a power management protocol that provides partial (but
high) sensor coverage of the target field, in ProSe. We specify the pCover program in shared-
memory model. We synthesize the corresponding nesC/TinyOS binary and study the performance
of the generated code. Through simulations, we show that the generated program extends the
lifetime of the network while providing a partial (but high) coverage.

Organization of the paper. The rest of the paper is organized as follows. In Section 2, we
briefly discuss how programs are specified in ProSe. Then, in Section 3, we prototype pCover in
ProSe. We present a brief overview of the protocol and discuss how we synthesized the nesC/TinyOS
binary. Subsequently, we study the performance of the generated binary code. We show that the
generated program extends the lifetime of the network. Finally, in Section 4, we discuss some of
the questions raised by this work and, in Section 5, we make the concluding remarks.

2 ProSe: Overview

In this section, we briefly outline the structure of programs in ProSe and discuss how nesC/TinyOS
binaries are synthesized.



2.1 Structure of Programs

In ProSe, programs are specified in terms of guarded commands [18]; each command (or action) is
of the form:

guard — statement,

where guard is a predicate over program variables, and statement updates program variables. An
action g — st is enabled when ¢ evaluates to true and to execute that action, st is executed. A
computation of this program consists of a sequence sg, s1,..., where s;,; is obtained from s; by
executing actions in the program (0 < j).

Computation model. A computation model limits the variables that an action can read and
write. Towards this end, we split the program actions into a set of processes (sensors). Each action
is associated with one of the processes (sensors) in the program. We now describe how we model
the restrictions imposed by shared-memory model and read/write model.

Shared-memory model.  In this model, in one atomic step, a sensor can read its state as well as
the state of its neighbors and write its own (public and private) variables.

Read/Write model. In this model, in one atomic step, a sensor can either (1) read the state of one
of its neighbors and update its private variables, or (2) write its own variables.

Programs written in shared-memory model or read/write model, however, are not suitable for
the constraints (and opportunities) provided by sensor networks. For this reason, in [16,17], the
authors have modeled the computations in sensor networks as a write all with collision (WAC)
model, discussed next.

Write all with collision (WAC) model.  In this model, each sensor consists of write actions (to
be precise, write-all actions). Specifically, in one atomic action, a sensor can update its own state
and the state of all its neighbors. However, if two or more sensors simultaneously try to update
the state of a sensor, say k, then the state of k remains unchanged. Thus, this model captures the
fact that a message sent by a sensor is broadcast. But, if multiple messages are sent to a sensor
simultaneously then, due to collision, it receives none.

To simplify programming sensor networks, recently, approaches have been proposed for trans-
forming programs into WAC model. They can be classified as: (a) TDMA based deterministic
transformation [16] and (b) CSMA based probabilistic transformation [17]. With the help of these
transformation algorithms, ProSe allows the designer to specify programs in simple abstract models
(e.g., shared-memory model, read /write model). Then, ProSe automatically transforms them into
WAC model and, subsequently, generates the corresponding nesC/TinyOS code.

2.2 Input/Output of ProSe

The input to ProSe consists of the guarded command program in shared-memory or read/write
model, its initial states and (optionally) the topology of the network. We discuss the input/output
of ProSe in the context of an example.

Input guarded commands program. Consider a M AX program, where each process (i.e.,
sensor) maintains a public variable x. The goal of M AX is to eventually identify the maximum
value of this variable across the network. We specify the actions of each process in this program as
follows (keywords are shown in bold font):



1 program max

2 sensor j

3 var public int x.j;

4 begin

5 (x.k > x.j) > x.j = x.k;
6 end

7 init state x.j = j;

The designer also specifies zero or more initial states of the program. If no initial states are specified,
ProSe initializes the variables of the program to arbitrary values. If more than one initial states
are specified, ProSe initializes the program to randomly selected state. In the above program, x.j
is initialized to j (i.e., ID of the sensor).

Auxiliary variables.  ProSe provides abstractions to deal with failure of sensors and presence
of Byzantine sensors. To determine whether a neighbor (say, k) is alive or failed, sensor j can just
access the public variable up.k; if up.k is TRUE (respectively, FALSE) then k is alive (respectively,
failed). Designers can use this abstract variable to simplify the design of sensor network proto-
cols while ProSe provides implementation of this variable through heartbeat protocol (e.g., [19]).
Similarly, ProSe also allows designers to model Byzantine sensors through abstract variables (b.j).

Topology information. ProSe wires a component (NeighborState) that maintains the state
information of the neighbors at each sensor, with the generated code. Towards this end, each
sensor should identify its neighborhood. ProSe allows the designers to integrate a neighborhood
abstraction layer (e.g., [20]) with the generated code. Such an abstraction layer allows a sensor to
learn its neighborhood dynamically. Optionally, the designers can specify the static topology of the
network as an input to ProSe using the topology file. This file includes the ID of the base station,
size of the network, and the communication topology. Based on the neighborhood information,
ProSe configures the MAC layer and NeighborState component.

Support for component invocations in guarded commands. Since ProSe allows the de-
signers to specify programs in guarded commands format, it makes protocol design highly intuitive
and concise. However, it is not always desirable to use guarded commands to specify protocols. For
example, consider the design of a routing protocol for sensor networks, where the sensors maintain
a spanning tree rooted at the base station. In this program, whenever the parent of a sensor fails,
it chooses one of its active neighbors for which the link quality is greater than a certain threshold,
as its parent. Towards this end, the sensor has to compute the link quality of each of its neighbors.
Specifying this action in guarded commands is difficult. Moreover, nesC/TinyOS components may
exist that provide the desired functionality.

To simplify the design of sensor network protocols, ProSe allows component invocations in guarded
commands. In the design of routing protocol, in order to find a neighbor that has a better link
quality, the designer can invoke the component LinkFEstimator to compute the quality estimate
of a given link. Thus, parent update action in the routing protocol can be specified in guarded
commands as follows:

1 // current parent (p.j) has failed and j-k link quality is greater than the threshold
2 (up.(p.j) == FALSE) && (up.k == TRUE) && (LinkEstimator.getQuality(k) > LINK_THRESHOLD)
3 -> p.j = k; currentParentLinkQuality.j = LinkEstimator.getQuality(k);

In the above action, the getQuality(k) method of LinkEstimator component returns the quality of
the link j — k. This component may need certain variables to compute the quality estimate. For
example, it may need counters that maintain the number of messages successfully transmitted over
each link. The action by which the counters are updated would be specified in guarded commands.



The variables used in the guarded commands program and the copies of the public variables of the
neighbors (maintained in NeighborState) are made available to the invoked component.

The designer has to implement LinkEstimator in nesC/TinyOS platform. This component, however,
uses only local data (i.e., it uses NeighborState). ProSe generates the code for NeighborState
component. And, it wires the component implemented by the designer with the generated code.

Output nesC/TinyOS code. In the generated nesC/TinyOS program, the actions of the
input program are executed whenever a timer fires. Once the sensor executes each action for which
the corresponding guard is enabled, it marshals all the public variables as a message wacMsg and
schedules it for transmission (broadcast). Depending on the transformation algorithm and the
MAC layer selected by the user, it configures when the timer fires and how wacMsg is transmitted.
For example, in case of a TDMA based transformation [16], ProSe configures the timer to fire in
every TDMA slots assigned to the sensor. And, it uses the TDMA service (e.g., [16,21,22]) to
broadcast the message. In case of a CSMA based transformation [17], ProSe configures the timer
to fire in a random interval whenever it receives a message containing values of public variables at
the sender. And, it uses a CSMA service (e.g., [23]) to broadcast wacMsg.

Similarly, ProSe generates code for NeighborState component that maintains the state information
of the neighbors whenever it receives an update message from one of its neighbors. Finally, ProSe
also generates code to (1) initialize all the program variables, (2) configure network services (e.g.,
TDMA, CSMA), and (3) configure and start middleware services (e.g., Timer).

3 Case Study: Prototyping pCover with ProSe

In this section, we present a case study on prototyping power management protocols with ProSe.
We model pCover [13], a simple power management protocol that provides partial (but high) sensor
coverage of the target field. Specifically, pCover maintains a certain degree of coverage through
sleep-awake scheduling of sensors. By trading little sensor coverage of the field, in [13], the authors
show (using C++ discrete event simulator) that pCover substantially improves the network lifetime.

First, in Section 3.1, we discuss the pCover program (written in shared-memory model). Then,
in Section 3.2, we show how we synthesize the corresponding nesC/TinyOS binary with ProSe.
Finally, in Section 3.3, we evaluate the performance of the generated code.

3.1 pCover: Overview

The pCover program written in shared-memory model is shown in Figure 1. The basic idea of
pCover is that a sensor should turn itself off if and only if its local coverage is higher than a certain
threshold, called OnThreshold. Local coverage of a sensor is the percentage of the sensor’s sensing
area that is covered by other awake sensors.

Description of the program. In this program, each sensor is in one of 4 states: probe, awake,
readyoff, and sleep. Each sensor j maintains one public variable st.j that identifies the state of the
sensor. In addition, j maintains a copy of the public variables of its neighbors (in NeighborState).
We discuss the actions of the pCover program shown in Figure 1 in detail, next.

Probe state. A sensor in probe state probes the environment, determines whether it should stay
awake or go to sleep. After a timeout Y, the sensor computes its local coverage. Note that the
designer has to provide the LocalCoverage component that returns the local coverage of a sensor.
This component acts only on the state information of the neighbors maintained at the sensor. The
sensor starts working if its local coverage is lower than the OnThreshold. Otherwise, the sensor



program pCover
sensor j
const int X, Y, Z, S, W, OnThreshold, 0ffThreshold;
var
public int st.j;
private int timer.j;
component LocalCoverage;
begin
(st.j == SLEEP) && (timer.j >= X)
-> st.j = PROBE; timer.j = O;
| (st.j == PROBE) && (timer.j >= Y) && (LocalCoverage.compute() > OnThreshold)
-> st.j = SLEEP; timer.j = O;
>
]

© 00 9 O os W N =

== e
N o= O
]

-
w

| (st.j == PROBE) && (timer.j >= Y) && (LocalCoverage.compute() <= OnThreshold)
-> st.j = AWAKE; timer.j = Random(0, S);

15 | (st.j == AWAKE) && (timer.j >= Z)

—
~

16 -> st.j = READYOFF; timer.j = O;

17 | (st.j == READYOFF) && (timer.j >= W)

18 -> st.j = AWAKE; timer.j = Random(0, S);

19 | (st.j == READYOFF) && (LocalCoverage.compute() > OffThreshold)
20 -> st.j = SLEEP; timer.j = O;

21 | ((st.j == SLEEP) && (timer.j <= X)) ||
22 ((st.j == PROBE) && (timer.j <= Y)) ||
23 ((st.j == AWAKE) && (timer.j <= Z)) ||
24 ((st.j == READYOFF) && (timer.j <= W))
25 -> timer.j = timer.j + 1;

26 end

Figure 1: pCover program in ProSe

switches to sleep state. The timeout Y is used to ensure that when the sensor decides whether it
should stay awake or go to sleep, it has the fresh state information of its neighbors.

Awake state. A sensor in awake state actively monitors the area within its sensing range. It
remains active until the timer reaches the timeout value Z. Since we do not want all awake sensors
to timeout at the same time, the timer is initialized to a random value. Once the awake timer
expires, the sensor changes its state to readyoff.

Readyoff state. In readyoff state, the sensor still provides sensing coverage. However, the neighbors
of a readyoff sensor (say j) consider j as a sleeping sensor. In other words, the neighbors of j do
not count it when they compute local coverage. If a readyoff sensor finds that its local coverage is
greater than OffThreshold, it will change its state to sleep. Also, if a sensor is in readyoff state for a
long duration, it can switch to awake state. This action allows one to deal with the case where a lot
of sensors are in readyoff state although none of them can go to sleep state (due to local coverage
being less than Off Threshold).

Sleep state. A sensor in sleep state wakes up every X minutes. When it wakes up, it changes its
state to probe and proceeds to execute actions in that state.

3.2 Transformation and Code Generation

We use ProSe to generate the nesC/TinyOS implementation of the pCover program and sub-
sequently build the binary image. Towards this end, we use the TDMA based transformation
from [16] to transform the program into WAC model and generate the nesC/TinyOS code. We
integrate SS-TDMA [21] with the generated program to implement the write-all action. As men-
tioned in Section 2, since the pCover program includes component invocation (LocalCoverage) in



the actions, we require the designer of the protocol to implement this component in nesC/TinyOS.
We discuss how the designer implements this component and how ProSe integrates it with the
generated code, next.

LocalCoverage component. Based on the state information of the neighbors of a sensor (say,
j), LocalCoverage component computes the percentage of j’s sensing area that is covered by its
awake neighbors. This component provides a method (compute()) that could be invoked in the
guarded commands program. This method returns the local coverage of the sensor.

In order to compute the local coverage of the sensor, LocalCoverage requires the state information
of the neighbors of the sensor. This information is maintained by NeighborState component (as
mentioned in Section 2). Since, ProSe wires NeighborState with LocalCoverage when generating
the nesC/TinyOS code for pCover, LocalCoverage component can obtain the state information of
the neighbors of the sensor by invoking NeighborState. Note that all accesses to NeighborState are
local and ProSe is responsible for updating NeighborState with fresh values. Thus, the designer
does not have to deal with programming level challenges of nesC/TinyOS platform and low-level
challenges of sensor networks (e.g., communication, collisions, corruption, etc).

3.3 Evaluation of the Synthesized Program

We evaluate the performance of the generated nesC/TinyOS code for pCover with TOSSIM [24], a
discrete event simulator for TinyOS sensor networks.

Simulation settings. We use the simulation setting similar to [13]. We deploy the sensors
in a grid topology over a 100m X 100m area. We set the sensing range r of the sensors to 10m
and the radio interference range to 50m. We vary the density of the sensors from 1 node/r? to
4 nodes/r?. Inter-sensor separation and the number of sensors deployed varies depending on the
density. With 1 node/r? (respectively, 2 nodes/r? and 4 nodes/r?), the inter-sensor separation is
10m (respectively, 7m and 5m) and the network size is 10x10 (respectively, 14x14 and 20x20). SS-
TDMA [21] sets the TDMA period depending on the number of sensors falling in the interference
range of a sensor. With 1 node/r? (respectively, 2 nodes/r? and 4 nodes/r?), SS-TDMA sets the
period to 50 (respectively, 100 and 200) slots, where one time slot = 30ms.

We assume that the lifetime of a sensor is 20 minutes. We choose this value in order to ensure
that the simulation completes within a reasonable time. (With density of 4 nodes/r?, the sim-
ulation takes 4 days to complete. Typically, sensors are expected to work continuously for 1000
minutes. Simulating a sensor lifetime of 1000 minutes in TOSSIM, however, would approximately
take 200 days to complete.) We simulate the lifetime of each sensor by maintaining a variable and
decrementing it appropriately in each time slot.

In all our simulations, we set the timeout values for pCover as follows: X = 1 minute, Y = 2 TDMA
slots, Z = 3 minutes, and S = W = 2 minutes. We randomly initialize the state of each sensor.
We set OnThreshold and OffThreshold to 0.7 and 0.6. We consider that a network is “dead” when
the global coverage of the network is less than a certain threshold even if all the alive nodes are
working. Global coverage (or degree of coverage) is the percentage of the field that is covered by
the working nodes. We define network lifetime as the duration from the beginning of deployment
until the network is dead. We use 50% as the threshold in our simulations.

In our simulations, each link in the network has a bit error probability, representing the probability
that a bit can be corrupted if it is sent along the link. Bit errors for each link is decided inde-
pendently (using LossyBuilder, a Java program in TinyOS release) based on empirical loss data
gathered from real world [25]. Next, we discuss our simulation results.



3.3.1 Coverage and Network Lifetime

In Figure 2, we show the degree of coverage and number of active sensors over time for different
network densities. In our simulations, we compute the global coverage for the entire 100m X
100m field and for the inner 80m X 80m field. The border sensors contribute only a part of their
sensing range in the field and, hence, we consider the inner 80m X 80m field, where there is no
such edge effect. As we can see from Figures 2(a) and 2(b), the sensors maintain the coverage at
approximately the same level. With density = 4 nodes/r2, initially (i.e., around 3 minutes), we
observe a drop in the coverage. This is due to the fact that large number of sensors are initially
set to active state (as a result of random initialization) and the number of active sensors fluctuate
before converging to an appropriate number that maintains the coverage at a certain level (around
94%). Figure 2(c) shows the number of active sensors over time. As we can observe from the figure,
this number remains at the same level until the point where the coverage starts dropping.
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Figure 2: Coverage and number of active sensors over time; (a) coverage of entire 100m X 100m
area, (b) coverage of inner 80m X 80m area, and (c) number of active sensors.
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From Figures 2(a) and 2(b), we observe that the coverage is well maintained until one point, after
which, the coverage drops suddenly, and the network dies in a short period. This shows that pCover
maintains a balanced energy consumption as all sensors run out of power at around the same time.
Also, we confirm the result in [13]; by sacrificing little coverage, the network lifetime is extended.
Specifically, the lifetime with densities of 2 nodes/r? (respectively, 4 nodes/r?) is around 56 minutes
(respectively, 62 minutes).

3.3.2 Quality of Coverage

As mentioned in [13], in partially covered sensor networks, quality of coverage is an important
metric. For example, in surveillance networks, it is measured in terms of how fast the sensors
detect a target object. Since the sleep interval (i.e., X) is 1 minute, time to detect stationary
objects in the sensor field is bounded by 1 minute. Additionally, since the sensors rotate their roles
(working vs. sleeping), the set of active sensors changes continuously. Hence, an undetected “hole”
is likely to be detected as the set of active sensors changes. In Figure 3, we show the snapshots of
the field at different times.

From Figure 3, we observe that the location of “holes” change continuously. In surveillance net-
works, the intruder does not know the location of such holes. Hence, it is unlikely that the intruder
can choose to move along the uncovered path. Therefore, the time to detect the intruder is small
on average.
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Figure 3: Snapshot of the field with density = 4 nodes/r? (dark regions are covered). Coverage
data below each subfigure shows the coverage of entire area and the coverage of inner 80m X
80m area respectively at that time.

4 Discussion and Related Work

In this section, we discuss some of the questions raised by this work and the related work on
programming platforms and power management protocols for sensor networks.

4.1 Other Power Management Protocols

It is possible to prototype other power management protocols with ProSe as well. To illustrate
this, in this section, we specify another power management protocol, namely, the differentiated
surveillance program from [7]. We discuss this program and present the program in guarded
commands format (cf. Figure 4). For reasons of space, in this paper, we do not discuss performance
evaluation of the generated nesC/TinyOS code of this program.

Description of the program. In this program, sensors operate in two phases: (i) initialization
and (ii) sensing. During initialization phase, the sensors compute the working schedule that specifies
when a sensor should sleep and when it should provide sensing coverage. In the sensing phase, time
is divided into rounds with equal duration (7"). The sensors execute depending on their schedule
in each round.

program DifferentiatedSurveillance
sensor j
const int T;
var
public int Ref.j;
private int phase.j, st.j, Tf.j, Te.j;
component CWindow;
begin
(phase.j == INIT) && CWindow.computeCoverageWindow(Ref.j, T)
-> phase.j = SENSE; st.j = SLEEP;
Tf.j = CWindow.getStartTime(); Te.j = CWindow.getEndTime();
| (phase.j == SENSE) && (st.j == SLEEP) &&
((Ref.j - Tf.j - 1) < (TIME % T)) && ((TIME % T) <= (Ref.j - Tf.j))
-> st.j = AWAKE;
| (phase.j == SENSE) && (st.j == AWAKE) &&
((Ref.j + Te.j) < (TIME % T)) && ((TIME % T) <= (Ref.j + Te.j + 1))
-> st.j = SLEEP;
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Figure 4: Surveillance program from [7] in ProSe

8

B 100 120 10 160

80



Each sensor j maintains a public variable Ref.j, a random time reference point chosen by j within
[0,7). The component CWindow computes the time when j should wake up (i.e., Ref.j— Tf.j) and
when it should go to sleep (i.e., Ref.j+Te.j) in each round. Specifically, depending on the Ref values
of the neighbors of j (maintained by NeighborState), CWindow computes Tf.j and Te.j for each
point in the sensing range of j such that the point is covered 100% of the time. Once it computes
the schedule for all points in the j’s sensing range, it computes the integrated working schedule for
7.

The program shown in Figure 4 invokes computeCoverage Window() method of CWindow to de-
termine whether the sensor can enter the sensing phase. This method returns T RUE only when
7 has received the state information of all its neighbors. When this method returns TRUE, the
sensor starts executing the sensing phase according to the computed schedule. The program calls
getStartTime() and getEndTime() methods of CWindow to get the working schedule of j. In Figure
4, the program uses the keyword TIM FE to determine when the sensor should go to sleep or stay
awake. TIMFE represents the system time and ProSe adds code to get the system time and keep
it synchronized.

Transformation and code generation. We generate the nesC/TinyOS implementation of
the program shown in Figure 4 with ProSe. We use the TDMA based transformation from [16] to
transform this program into WAC model and integrate SS-TDMA [21] with the generated code.
Again, in this program, we require the designer to implement CWindow in nesC/TinyOS. ProSe
integrates NeighborState with CWindow.

4.2 Lessons Learned in Prototyping Power Management Protocols

In this section, we discuss some of the lessons learned in prototyping power management protocols
with ProSe.

Rapid prototyping and quick evaluation. Most of the power management protocols for
sensor networks follow the event-driven model. For example, in pCover (cf. Section 3) and differ-
entiated surveillance (cf. Section 4.1), we observe that a sensor switches to either working mode
or sleeping mode whenever an event occurs (such as a timeout). Since guarded commands format
is event-driven in nature, prototyping power management protocols with ProSe is straightforward.
Furthermore, the time required to prototype protocols with ProSe is small. For example, the time
required to prototype pCover with ProSe was in the order of few minutes. Also, the time required
to specify LocalCoverage, a component used to compute the percentage of a sensor’s sensing region
covered by other active neighbors, was in the order of couple of hours. As mentioned in Section 3.2,
this component uses only local data and, hence, we did not have to worry about communication.
As a result, specifying this component in nesC/TinyOS platform was quick. By contrast, had we
chosen to prototype pCover directly in nesC/TinyOS, we would have to deal with all low-level
challenges of sensor networks and programming-level challenges of the platform. Based on our
experience in developing protocols with nesC/TinyOS, we expect this effort to take considerable
time (usually, few days to couple of weeks).

In short, ProSe provides a way to rapidly prototype power management protocols and generate the
corresponding nesC/TinyOS implementation. Hence, the designers can quickly deploy and easily
evaluate their protocols.

Preserving properties of interest.  Since designers specify protocols in guarded commands
format (with ProSe), they can analyze them for properties such as fault-tolerance, self-stabilization,
and reliability. In addition, the designers can automatically add new properties to the guarded



commands program. For example, the designers can use FTSyn [26] to automatically add fault-
tolerance properties to their programs. If the transformation algorithm used to transform the
input program (in shared-memory model or read /write model) into a model consistent with sensor
networks (i.e., write all with collision model [16, 17]) preserves properties of interest then ProSe
also preserves such properties. Thus, ProSe simplifies the design of power management protocols
while ensuring that the properties of interest are preserved in the transformed programs.

4.3 Related Work

Work related to rapid prototyping of power management protocols can be categorized as: (i)
programming platforms and (ii) power management protocols.

Programming platforms. Related work that deals with programming abstractions include
[27-30] and tools for programming sensor networks include [20, 31-36].

Programming abstractions. In [27], a state centric approach is proposed that captures algorithms
such as sensor fusion, signal processing and control. In this model, the abstraction of collaboration
groups hides the designer from issues such as communication protocols, event handling, etc. In
[28, 29], macroprogramming primitives that abstract communication, data sharing and gathering
operations are proposed. However, these primitives are application-specific (e.g., abstract regions
for tracking and gathering [28] and region streams for aggregation [29]). And, in [30], semantic
services programming model is proposed where users only specify the end goal on what semantic
data to collect. Unlike [27-30], ProSe allows the designer to evaluate existing algorithms in the
context of sensor networks. Moreover, since the programs are written in abstract models considered
in distributed systems, ProSe permits the designer to verify the correctness of the programs as well
as to manipulate the programs to meet new properties.

Programming tools. — Techniques like virtual machine (e.g., Maté [31]), middleware (e.g., Enviro-
Track [32]), library (e.g., SNACK [33]), and database (e.g., TinyDB [34]) are proposed for simplify-
ing programming sensor network applications. However, these solutions are (i) application-specific,
and/or (ii) restrict the designer to what is available in the virtual machine, middleware, library, or
network. In [36], macroprogramming model, called Kairos, that hides the details of code-generation
and instantiation, data management, and control is proposed. However, unlike [20,31-36], ProSe
hides low-level details such as message collisions, corruption, sensor failures, etc. Moreover, ProSe
does not require any runtime support.

Power management protocols. Related work on power management protocols for sensor
networks include [7-13]. In [9], a sensor is allowed to go to sleep if and only if one of its neighbors
can completely cover its sensing area. As identified by [7], this approach underestimates the coverage
provided by neighboring sensors and, hence, it leads to energy waste. Additionally, both [7] and [9]
require a global synchronization service. In [10], a coverage configuration protocol is proposed
where a sensor can switch to sleep state if all intersection points inside its sensing range are at
least k-covered (i.e., a point is covered by at least k sensors). However, unlike [13], this approach
requires more number of active sensors.

Power management protocols proposed in [8, 11, 13] follow similar design principles. However,
unlike [11,13], in [8], a working sensor is awake continuously until its failure or depletion of power.
In [8,11], by controlling the range of messages transmitted, the density of working sensors is
controlled. However, online estimation of transmission ranges and the number of working sensors
are often difficult and inaccurate.
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5 Conclusion

In this paper, we considered the problem of rapid prototyping of power management protocols for
sensor networks. Since existing programming platforms (e.g., nesC/TinyOS) require the designers
to be responsible for stack management, buffer management, and flow control, the designers of power
management protocols prototype the protocols either by implementing a discrete event simulator
or by modeling in a specialized simulator such as GloMoSim [14]. To enable rapid prototyping
and quick evaluation of power management protocols in the target platform (e.g., nesC/TinyOS for
Mica, XSM, or Telos based sensor networks), in this paper, we demonstrated how the designers can
prototype their protocols with ProSe. ProSe is programming tool for sensor networks that enables
the designers to (i) specify programs in simple abstract models, (ii) transform them into a model
consistent with sensor networks, (iii) preserve properties of interest in the transformed programs,
and (iv) automatically generate and deploy nesC/TinyOS code.

As a case study, we specified the power management program from [13] with ProSe, generated the
corresponding nesC/TinyOS code, and evaluated its performance on TOSSIM [24]. We showed that
the synthesized program provides partial (but high) coverage of the sensor field. We also specified
other power management protocols with ProSe and showed that the time required to prototype
such protocols is small.

Since ProSe hides low-level challenges of sensor networks (e.g., message collision, corruption, syn-
chronization, etc) and programming level challenges (e.g., buffer management, stack management,
etc), the designers can rapidly prototype their protocols and generate code in the target platform.
As a result, the development time and deployment time are small. In this paper, we illustrated
this by prototyping pCover [13] and differentiated surveillance [7] programs with ProSe. Thus,
with ProSe, we expect that the designers can rapidly prototype, quickly deploy and easily evaluate
power management protocols in the target platform.
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